QPE Analysis: MPE-RFC Comparison

Rob Cifelli (NOAA OAR ESRL)

Dave Streubel NOAA NWS WR)

Dave Reynolds (NOAA NWS MTR)

Background

- NWS has a number of operational products for quantitative precipitation estimation (QPE)
- Products have different resolution (temporal and spatial) and use different sensor information to derive QPE
- Verification of QPE products is difficult, especially in mountainous regions
- HMT precipitation data is currently not used in operational QPE products and can serve as independent validation

Objective

 Use HMT-West data to assess 2 QPE products: MPE and RFC

- Which product does a better job at QPE in different precipitation regimes and different regions?
- Quantify uncertainty in MPE for FFMP
- What is added value of gap-fill radar data to MPE product?

QPE Products Evaluated

Multi-sensor precipitation estimator (MPE)

- Uses combination of radar and rain gauge data to construct QPE on 1 hr time scales
- Data are interpolated to 4 km grid
- Gauge data used to bias-correct radar data

RFC (River Forecast Center) Stage IV

- Uses gauge data only to construct QPE
- Data are interpolated to 4 km grid
- PRISM climatology used interpolate data
- Temporal resolution is 6-hr

HMT Gages, MTR MPE Radars

Radar Coverage MPE – Multisensor Precipitation Estimator

NEXRAD Only

NEXRAD +KPIX

Analysis Plan

- Examine a "test case" (no KPIX) to develop methodology
- Contrast results with another test case (with KPIX)
- Examine multiple seasons of data to develop robust statistics

Expected Outcomes

- Improved understanding of uncertainty in MPE and RFC QPE products
- Quantify improvement of MPE using KPIX
- Evaluation of additional QPE products (e.g., Q2)
- Evaluation of short-term QPF products

Case 1 Storm Total: 01/17/10-12z to 01/21/10-18Z RFC Stage 4 QPE vs MTR MPE QPE

RFC STG4 Storm Total

Comparison of storm total QPE for all HMT gauges

• For this event, RFC does a better job for storm total precipitation

Case 1 Storm Total PCP: MPE/Stage 4 MTR MPE N-DOMAIN

 Bias of MPE:RFC
 varies
 significantly
 across HMT
 network

Sonoma County Comparison

Gages used in RFC ST4 and MPE analysis - HMT gages not used.

Evaluation
 of both
 point
 estimates
 and spatial
 gradients

How does HMT gage distribution and spatial distribution compare to climatology?

HMT gage distribution January PRISM

Temporal and spatial variation of HMT gages Case 1: HMT gage 0120_17

Spatial Distribution Differences MPE vs ST4 vs PRISM

MPE Sonoma County distribution and variogram

Jan PRISM Climatology

Accuracy Assessment: Nearest Grid cell vs HMT Gage data Sonoma County Domain

1-HR Precipitation Time Series: Bodega Bay (BBY)

- Agreement of MPE or RFC with HMT gauges varies significantly over time
- Examine additional HMT observing systems (profiling radars) to better understand causes of variability

Cazadero (CZC): time series of precipitation

